期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广西民族大学软件与信息安全学院,南宁530006
基 金:国家自然科学基金资助项目(21466008,61640016);广西科技基地和人才专项项目(2017AD23056);广西高等教育本科教学改革工程项目(2016JGA181);广西民族大学引进人才科研启动项目(2016MDQD009)
年 份:2020
卷 号:37
期 号:S01
起止页码:283-286
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD_E2019_2020、IC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊
摘 要:对网站恶意攻击展开研究,通过在单机环境和具有1台服务器、2台客户机的局域网环境下模拟暴力破解、撞库、分布式拒绝服务攻击网站,以人工标注网站日志数据,训练一个LSTM网络分类模型,利用监控脚本在线监控网站日志,将日志数据转换成结构化数据并输入训练好的LSTM网络进行分类,以区分恶意攻击产生的日志和正常日志,达到识别恶意攻击类型的目的。在测试集数据上,分类准确率达到99%以上。按类似的思路,还构建一个基于自编码器和LSTM网络的分类模型,用KDD99数据集对该分类器进行训练和测试。实验结果表明,平均分类准确率约为99.7%,明显优于其他比较方法。网络攻击数据通常隐式地具有序列特征,将分类问题转换为序列标注问题,并用深度学习技术来求解,其整体解决思路是合理且有效的,可为后续的安全防护提供有效支持。
关 键 词:深度学习 恶意攻击 LSTM网络 PyTorch框架 Nginx日志 KDD99数据集
分 类 号:TP18] TP393.08]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...