期刊文章详细信息
文献类型:期刊文章
机构地区:[1]哈尔滨工业大学深圳研究生院生物计算研究中心,广州深圳518055
基 金:国家自然科学基金资助项目(60602038);广东省自然科学基金资助项目(06300862)。
年 份:2007
卷 号:43
期 号:3
起止页码:33-36
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:提出了一种核Fisher鉴别分析方法优化方案,并分别给出了解决两类分类和解决多于两类的分类问题的算法,该方案具有明显的分类效率上的优势。在这种方案的实现中,首先从总体训练样本中选择出“显著”训练样本,对测试样本的分类只依赖于测试样本与“显著”训练样本之间的核函数。还设计出了一种选择“显著”训练样本的递归算法,以降低算法的计算复杂度。将该算法应用于人脸图象数据库与“基准”数据集,得到了很好的实验效果。
关 键 词:FISHER鉴别分析 核函数 模式识别 特征空间
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...

