登录    注册    忘记密码

期刊文章详细信息

基于非线性主成分分析的自适应变步长盲源分离算法    

Adaptive variable step-size blind source separation algorithm based on nonlinear principal component analysis

  

文献类型:期刊文章

作  者:辜方林[1] 张杭[1] 李伦辉[2]

机构地区:[1]解放军理工大学通信工程学院 [2]中国人民解放军75708部队

出  处:《计算机应用》

基  金:国家自然科学基金资助项目(61001106);国家973计划项目(2009CB320400)

年  份:2013

卷  号:33

期  号:5

起止页码:1233-1236

语  种:中文

收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:算法的迭代步长对于算法的收敛性能有着重要影响。针对固定步长的非线性主成分分析(NPCA)算法不能兼顾收敛速度和估计精度的情形,提出基于梯度的自适应变步长NPCA算法和最优变步长NPCA算法两种自适应变步长算法来改善其收敛性能。特别地,最优变步长NPCA算法通过对代价函数进行一阶线性近似表示,从而计算出当前的最优迭代步长。该算法的迭代步长随估计误差的变化而变化,估计误差大,迭代步长相应大,反之亦然;且不需要人工设置任何参数。仿真结果表明,当算法的估计精度相同时,与固定步长NPCA算法相比,两种自适应变步长NPCA算法相对固定步长NPCA算法都具有更好的收敛速度或跟踪性能,且最优变步长NPCA算法的性能优于基于梯度的自适应变步长NPCA算法。

关 键 词:盲源分离 非线性主成分分析  变步长

分 类 号:TN911.7]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心