登录    注册    忘记密码

期刊文章详细信息

基于平衡采样的轻量级广告点击率预估方法    

Balance-sampling based light-weighted advertisement CTR prediction method

  

文献类型:期刊文章

作  者:施梦圜[1] 顾津吉[2]

机构地区:[1]南京大学软件新技术国家重点实验室,南京210093 [2]百度中国有限公司联盟研发部,上海210203

出  处:《计算机应用研究》

年  份:2014

卷  号:31

期  号:1

起止页码:33-36

语  种:中文

收录情况:AJ、BDHX、BDHX2011、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊

摘  要:类似Google AdSense这样的定向广告投放系统在过去十年得到了长足的发展和进步,在定向广告投放系统中,机器学习方法在广告点击率预估扮演着重要角色。目前,广告点击率预估模型中的训练数据逐渐呈指数级增长,越来越大的训练数据给模型的扩展性带来了极大的不便。很多有用的特征以及复杂的模型受限制于训练集规模而无法加入到模型之中。借鉴类别不平衡问题中的平衡采样策略,通过多次采样的负样本数据和集成学习,缩短训练时间,改善学习准确率。实验证明在采用了平衡采样之后,点击率预估效果和线上资源消耗都得到了优化。

关 键 词:广告点击率  机器学习  计算广告学  类别不平衡学习  

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心