期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中电六所智能系统有限公司,北京100083
年 份:2014
卷 号:5
期 号:4
起止页码:18-23
语 种:中文
收录情况:普通刊
摘 要:文章利用并行计算框架MapReduce,探索数据立方体的计算问题。数据立方体的计算存在两个关键问题,一个是计算时间的问题,另一个是立方体的体积问题。随着维度的增加,计算时间将呈现指数级的增长,立方体的体积也是如此。尽管MapReduce是一个优秀的并行计算框架,但在处理数据倾斜时,分区算法不够完善,导致一些计算任务时间过长,影响整个作业的完成时间。本文通过数据采样的方式,优化数据分区,实验结果表明,数据立方体的计算的性能明显提升。为解决数据立方体体积过大的问题,在Reduce阶段将最终的结果输出到基于NoSQL的HBase数据库进行存储,HBase方便水平扩展,同时也便于日后对数据立方体的查询。
关 键 词:数据立方体 数据分区 数据分析
分 类 号:TP393.03]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...