期刊文章详细信息
文献类型:期刊文章
机构地区:[1]重庆邮电大学通信新技术应用研究中心,重庆400065 [2]重庆重邮信科(集团)股份有限公司,重庆401121
年 份:2018
卷 号:38
期 号:3
起止页码:644-649
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2017_2018、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:针对社交网络推荐系统中存在的数据稀疏、冷启动等问题,提出了一种结合特征传递和概率矩阵分解(TPMF)的社交网络混合型推荐算法。以概率矩阵因式分解(PMF)方法作为推荐框架,不仅考虑了用户信任网络,还结合推荐项目之间的关联关系、用户项目评分矩阵和自适应权重来权衡个人潜在特征和社交潜在特征对用户的影响程度。将社交网络中用户间的信任特征传递引入推荐系统中作为推荐的有效依据。实验结果表明,与基于用户的协同过滤(UBCF)、TidalTrust、PMF和SoRec算法相比,TPMF的平均绝对误差(MAE)直接相减后降低了4.1%到20.8%,均方根误差(RMSE)降低了3.3%到18.5%。在冷启动问题中,与上述四种算法相比,TPMF的平均绝对误差相减后降低了1.6%到14.7%,均方根误差降低了约1.2%到9.7%,能有效缓解冷启动问题,提高算法的鲁棒性。
关 键 词:社交网络 特征传递 概率矩阵分解 信任网络 推荐系统
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...