期刊文章详细信息
文献类型:期刊文章
DING Haixu;LI Wenjing;YE Xudong;Qiao Junfei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,Beijing,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,Beijing,China;Huludao Electric Power Bureau,State Grid Liaoning Electric Power Supply Company,Huludao 125000,Liaoning,China)
机构地区:[1]北京工业大学信息学部,北京市100124 [2]计算智能与智能系统北京市重点实验室,北京市100124 [3]国网辽宁省电力有限公司葫芦岛供电公司,辽宁省葫芦岛市125000
基 金:国家自然科学基金资助项目(61533002,61603009);北京市自然科学基金(4182007);北京工业大学日新人计划(2017-RX(1)-04)
年 份:2019
卷 号:36
期 号:4
起止页码:331-336
语 种:中文
收录情况:BDHX、BDHX2017、CAS、JST、ZGKJHX、核心刊
摘 要:生化需氧量是污水处理过程中评价水质的重要指标之一,神经网络软测量是解决其在线测量困难的主要方法。污水处理是一个动态的过程,而前馈神经网络由于缺乏动态性而难以保证对其的测量精度。本文提出了一种自组织递归模糊神经网络,建立了内部的反馈连接以增强网络动态性能,通过评估神经元的互信息关系和激活强度以增长或修剪规则层神经元,采用梯度下降学习算法进行参数更新,并结合自适应学习率以提高收敛精度。通过对实际污水厂数据的实验结果表明,本文提出的模型结构更紧凑,对出水生化需氧量的预测精度更高。
关 键 词:生化需氧量 自组织递归模糊神经网络 互信息 自适应学习率
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...