期刊文章详细信息
可视化支持下CNN在个性化推荐算法中的应用
Application of CNN in Personalized Recommendation Algorithms Supported by Visualization
文献类型:期刊文章
ZONG Chun-Mei;ZHANG Yue-Qin;ZHAO Qing-Shan;HAO Yao-Jun;GUO Yue-Xin(Department of Computer Scienceand Technology,Xinzhou Teachers University,Xinzhou 034000,China;College of Computer Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China;Northwest Institutes of Advanced Technology,Xi’an Technological University,Xi’an 710021,China)
机构地区:[1]忻州师范学院计算机系,忻州034000 [2]太原理工大学计算机科学与技术学院,太原030024 [3]西安工业大学西北兵器工业研究院,西安710021
基 金:国家自然科学基金面上项目(61876124);忻州师范学院教学改革项目(JG201813);忻州师范学院院级科研项目(2019ky02)。
年 份:2020
卷 号:29
期 号:6
起止页码:204-210
语 种:中文
收录情况:IC、ZGKJHX、普通刊
摘 要:传统的基于协同过滤的推荐方法可以挖掘出评分中隐含的特征,但推荐过程时间长,且评分矩阵具有稀疏性,导致样本真实值与预测值间误差较大.神经网络通过批量训练可以较快计算出对象特征,卷积神经网络的局部感知与参数共享性使参数个数明显缩减,利用普通神经网络及卷积神经网络共同实现推荐可使计算时间缩短;通过调整神经网络的参数,为卷积神经网络设计合理的特征向量和卷积核大小,可以提升推荐速度和推荐准确性.实验表明,使用神经网络结合卷积神经网络进行推荐的方法能使推荐的绝对误差均值下降至0.67以下,大幅提升推荐的准确性及有效性.
关 键 词:神经网络 卷积神经网络 个性化推荐 可视化 Tensorboard
分 类 号:TP391.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...