登录    注册    忘记密码

期刊文章详细信息

基于生成对抗网络和深度残差神经网络的变电站异物检测    

Substation Foreign Object Detection Based on Generative Adversarial Network and Deep Residual Neural Network

  

文献类型:期刊文章

作  者:孙旭日[1] 李延真[1] 彭博[1] 李晓悦[1] 周超群[1]

SUN Xuri;LI Yanzhen;PENG Bo;LI Xiaoyue;ZHOU Chaoqun(Qingdao Power Supply Company,State Grid Shandong Electric Power Company,Qingdao 266000,Shandong,China)

机构地区:[1]国网山东省电力公司青岛供电公司,山东青岛266000

出  处:《电网与清洁能源》

基  金:国网山东省电力公司科技项目资助(520602180232)。

年  份:2020

卷  号:36

期  号:9

起止页码:68-75

语  种:中文

收录情况:IC、JST、RCCSE、ZGKJHX、普通刊

摘  要:变电站电力巡检能够保证变电设备安全运行,及时发现潜在危险和隐患。传统方法主要依靠人工完成,需要较多的人力物力,并且由于变电站异物入侵的偶然性和突发性,传统方法很难预测发生的时间和地点。针对该问题,提出了基于生成对抗网络和深度残差神经网络的变电站异物检测技术。利用深度残差神经网络提出图片的特征,结合区域推荐网络和池化分类器实现目标的分类和定位。利用生成对抗网络生成样本扩充训练数据库,提升了网络的学习能力。最后利用真实变电站的图片数据进行测试,提出的方法具有较高的异物识别准确度,并且比较了不同种类不同数目的训练集,验证了通过生成对抗网络扩充样本的有效性和可行性。

关 键 词:异物检测  变电站 卷积神经网络 生成对抗网络  

分 类 号:TM93]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心