期刊文章详细信息
文献类型:期刊文章
ZHANG Luda;DENG Chao(School of Physics and Electronic Information Engineering,Henan Polytechnic University,Jiaozuo,Henan 454003,China)
机构地区:[1]河南理工大学物理与电子信息学院,河南焦作454003
基 金:河南省重点研发与推广专项(科技攻关)(202102310560);河南省高校基本科研业务费专项资金(NSFRF210427)。
年 份:2021
卷 号:57
期 号:16
起止页码:283-290
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:在新型冠状病毒疫情防控要求下,商场、车站等公共场所人群环境下佩戴口罩成为人们出行的必要条件。由于在人群环境下往往存在人员密集,容易相互遮挡,且目标尺度较小等影响,口罩佩戴检测容易出现误检、漏检等问题。针对这些问题,在YOLOv3算法的基础上,提出一种基于改进YOLOv3的人群口罩佩戴检测算法。添加浅层特征图,在原来的3尺度检测结构上增加浅层检测尺度形成4尺度检测结构,提高检测准确率;引入自上而下和自下而上的多尺度融合结构,进一步利用特征信息,实现特征增强;选用CIoU损失函数进行边框回归,提高定位精度。实验结果表明,改进的YOLOv3算法的平均精度均值达到了93.66%,相比于原YOLOv3算法提高了5.61个百分点。相比于其他主流算法,该算法在口罩佩戴检测任务中有更高的检测精度,具有很好的实用性。
关 键 词:人群环境 YOLOv3 口罩佩戴检测 特征增强 损失函数
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...