期刊文章详细信息
基于Hessian正则的自适应损失半监督特征选择 ( EI收录)
Adaptive loss semi-supervised feature selection based on Hessian regularization
文献类型:期刊文章
ZHU Jian-yong;ZHOU Zhen-chen;YANG Hui;NIE Fei-ping(College of Electrical and Automation,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Advanced Control and Optimization of Jiangxi Province,Nanchang 330013,China;Center for Optical Image Analysis and Learning,Northwestern Polytechnical University,Xi’an 710072,China)
机构地区:[1]华东交通大学电气与自动化工程学院,南昌330013 [2]江西省先进控制与优化重点实验室,南昌330013 [3]西北工业大学光学影像分析与学习中心,西安710072
基 金:国家自然科学基金重点项目(61733005);国家自然科学基金项目(61563015,61963015,61863014);江西省自然科学基金项目(20171ACB21039,20192BAB207024);江西省教育厅科技项目(GJJ150552)。
年 份:2021
卷 号:36
期 号:8
起止页码:1862-1870
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD2021_2022、EAPJ、EI、IC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:传统的基于拉普拉斯图的半监督特征选择算法处理高维、少标签样本时,缺乏外推能力且对数据异常值的鲁棒性差.基于此,提出一种基于Hessian正则的自适应损失半监督稀疏特征选择算法.首先,为提升线性映射能力,利用Hessian正则保留数据的局部流形结构;其次,为增强模型对具有较小或者较大损失数据的鲁棒性,引入自适应损失函数,通过调节自适应损失参数确定最小损失;再次,采用l2,p范数稀疏投影矩阵,提升特征的区分度,增加模型适应度;最后,采用递归迭代优化求解目标函数.仿真实验验证了所提方法的有效性和优越性.
关 键 词:半监督 特征选择 自适应损失 稀疏约束 L2 p范数
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...