登录    注册    忘记密码

期刊文章详细信息

基于改进长短时记忆网络的驾驶行为检测方法研究  ( EI收录)  

Study on Driving Behavior Detection Method Based on Improved Long and Short⁃term Memory Network

  

文献类型:期刊文章

作  者:施冬梅[1] 肖锋[2]

Shi Dongmei;Xiao Feng(Department of Computer Science and Technology,Suzhou College of Information Technology,Suzhou 215200;School of Computer Science and Engineering,Xi’an Technological University,Xi’an 710021)

机构地区:[1]苏州信息职业技术学院计算机科学与技术系,苏州215200 [2]西安工业大学计算机科学与工程学院,西安710021

出  处:《汽车工程》

基  金:国家自然科学基金(61572394);陕西省科技计划项目(2020GY-066);江苏省自然科学基金(BK20191225);2020年苏州高职高专第二批产学研合作基地项目(2020-5)资助。

年  份:2021

卷  号:43

期  号:8

起止页码:1203-1209

语  种:中文

收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:疲劳驾驶和不安全驾驶行为是引起交通事故的主要原因,随着智能交通技术的发展,利用深度学习算法进行驾驶行为检测已成为研究的热点之一。在卷积神经网络和长短时记忆神经网络的基础上,结合注意力机制改进网络结构,提出一种混合双流卷积神经网络算法,空间流通道采用卷积神经网络提取视频图像的空间特征值,以空间金字塔池化代替均值池化,统一了特征图的尺度变换,时间流通道采用SSD算法计算视频序列相邻两帧光流图像,用于人眼等脸部小目标的检测,再进行图像特征融合与分类,在LFW数据集和自建数据集中进行了实验,结果表明本方法的人脸识别和疲劳驾驶的检测准确率分别高于其他方法1.36和2.58个百分点以上。

关 键 词:安全驾驶 卷积神经网络 长短时记忆  单步检测  人脸识别 疲劳驾驶检测  

分 类 号:U495[物流管理与工程类] TP391.41] TP183]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心