登录    注册    忘记密码

期刊文章详细信息

基于VMD-SSA-LSSVM的短期风电预测  ( EI收录)  

SHORT-TERM WIND POWER FORECASTING BASED ONVMD-SSA-LSSVM

  

文献类型:期刊文章

作  者:王维高[1] 魏云冰[1] 滕旭东[1]

Wang Weigao;Wei Yunbing;Teng Xudong(School of Electrical and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)

机构地区:[1]上海工程技术大学电子电气工程学院,上海201620

出  处:《太阳能学报》

基  金:国家自然科学基金(51507157)。

年  份:2023

卷  号:44

期  号:3

起止页码:204-211

语  种:中文

收录情况:BDHX、BDHX2020、CAS、CSCD、CSCD_E2023_2024、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:为解决由于风电预测中出现的波动性和随机性造成风电功率预测精确度不高的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)、Tent混沌映射、随机游走的麻雀搜索优化算法(sparrow search algorithm,SSA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的组合模型。首先应用鲸鱼优化算法(whales optimization algorithm,WOA)对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经过WOA-VMD对原始风电功率时间序列分解过后,引入改进的麻雀搜索算法SSA优化最小二乘支持向量机LSSVM中的学习参数,然后对分解得到的各个子序列建立SSA-LSSVM预测模型;最后叠加各个子序列的预测值并得到最终预测值。经实验仿真对比,该文组合模型较现有单一预测模型和普通组合模型在预测精度上有较大提高。

关 键 词:自适应算法 风电功率 预测模型分析  最小二乘支持向量机 变分模态分解  

分 类 号:TP301.6]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心