期刊文章详细信息
文献类型:期刊文章
XIONG Enjie;ZHANG Rongfen;LIU Yuhong;PENG Jingxiang(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025
基 金:贵州省基础研究(自然科学)项目(黔科合基础-ZK[2021]重点001)。
年 份:2023
卷 号:59
期 号:20
起止页码:200-207
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2023_2024、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对当前传统网络模型对交通标志识别精度低、检测不准确的问题,提出一种基于YOLOv8n优化、改进的Ghost-YOLOv8交通标志检测模型。使用GhostConv代替部分Conv,设计全新的C2fGhost模块代替部分C2f,减少了模型的参数量,提升了模型的检测性能;在Neck部分添加GAM注意力机制模块,强化特征中的语义信息和位置信息,提高了模型的特征融合能力;针对检测小目标时尺度不一导致语义信息的丢失,添加小目标检测层,增强深层语义信息与浅层语义信息的结合;使用GIoU边界损失函数代替原损失函数,提升了网络的边界框回归性能。实验结果表明,改进的模型在中国交通标志检测数据集TT100K中的精确度(Precision)及平均精度均值(mAP)相较于原模型分别提高了9.5、6.5个百分点,模型的参数量及模型大小相比原模型分别降低了0.223×109、0.2 MB。综合说明,该模型在减少模型参数量及大小的同时提高了检测精度,显著优于对比算法,也满足边缘计算设备的要求,具有实际的应用价值。
关 键 词:YOLOv8 交通标志 GhostNet 全局注意机制(GAM) 小目标检测层 GIoU
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...