期刊文章详细信息
文献类型:期刊文章
WU Mingjie;YUN Lijun;CHEN Zaiqing;ZHONG Tianze(School of Information,Yunnan Normal University,Kunming 650500,China;Yunnan Provincial Department of Education Computer Vision and Intelligent Control Technology Engineering Research Center,Kunming 650500,China)
机构地区:[1]云南师范大学信息学院,昆明650500 [2]云南省教育厅计算机视觉与智能控制技术工程研究中心,昆明650500
基 金:云南省教育厅科学研究基金(2023Y0533)。
年 份:2024
卷 号:60
期 号:2
起止页码:191-199
语 种:中文
收录情况:AJ、BDHX、BDHX2023、CSCD、CSCD_E2023_2024、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对无人机飞行时与目标距离较远,被拍摄的目标大小有明显的差异且存在被物体遮挡等问题,提出一种基于YOLOv5s的无人机视角下小目标检测改进算法BD-YOLO。在特征融合网络中采用双层路由注意力(bi-level routing attention,BRA),其以动态稀疏的方式过滤特征图中最不相关的特征,保留部分重要区域特征,从而提高模型特征提取的能力;由于特征图经过多次下采样后会丢失大量位置信息和特征信息,因此采用一种结合注意力机制的动态目标检测头DyHead(dynamic head),该检测头通过尺度感知、空间感知和任务感知的三者统一,以实现更强的特征表达能力;使用Focal-EIoU损失函数,来解决YOLOv5s中CIoU Loss计算回归结果不准确的问题,从而提高模型对小型目标的检测精度。实验结果表明,在VisDrone2019-DET数据集上,BD-YOLO模型较YOLOv5s模型在平均精度(mAP@0.5)指标上提高了0.062,对比其他主流模型对于小目标的检测都有更好的效果。
关 键 词:无人机视角 YOLOv5s 小目标 注意力机制 损失函数
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...