登录    注册    忘记密码

期刊文章详细信息

基于SVM-LSTM-ATTE组合模型的高校录取分数线预测    

University admission score prediction based on SVM-LSTM-ATTE model

  

文献类型:期刊文章

作  者:秦信芳[1] 魏嘉银[1] 姚林[2] 卢友军[1] 干霞[1] 来小孟[1]

QIN Xinfang;WEI Jiayin;YAO Lin;LU Youjun;GAN Xia;LAI Xiaomeng(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;Personnel Office,Guizhou Minzu University,Guiyang 550025,China)

机构地区:[1]贵州民族大学数据科学与信息工程学院,贵阳550025 [2]贵州民族大学人事处,贵阳550025

出  处:《智能计算机与应用》

基  金:贵州省科技计划项目(黔科合基础[2018]1082,黔科合基础[2019]1159);贵州省教育厅自然科学研究项目(黔教技[2022]015,黔教技[2022]047,黔教技[2023]012,黔教技[2023]061,黔教技[2023]062)。

年  份:2024

卷  号:14

期  号:2

起止页码:177-182

语  种:中文

收录情况:普通刊

摘  要:高校录取分数线预测受到许多动态因素影响,传统的SVM算法在预测高校录取分数线方面存在难以衡量输入特征序列对目标特征的影响程度,而注意力机制可以动态分配权重给重要特征,且基于注意力机制的长短期记忆网络(LSTM-ATTE),在高校录取分数线方面有显著成效。综合考虑多种因素,利用SVM可以把高维空间中的非线性问题转化为线性问题,以及LSTM-ATTE能解决时间序列数据长期依赖的问题,提出将SVM模型与LSTM-ATTE方法相结合的组合模型,来构建高校录取分数线预测模型,并通过网格搜索寻找组成LSTM-ATTE最优参数组合。实验证明,本文提出的组合模型在误差范围为3分的情况下,相比于其他模型准确率最高提升了13%。

关 键 词:长短期记忆网络  支持向量机 注意力机制  网格搜索

分 类 号:TP183]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心