登录    注册    忘记密码

期刊文章详细信息

基于LSTM神经网络的沪深300指数预测模型研究    

A Research on The Csi 300 Index Prediction Model Based on Lstm Neural Network

  

文献类型:期刊文章

作  者:冯宇旭[1] 李裕梅[1]

FENG Yu-xu;LI Yu-mei(Beijing Technology and Business University,School of Science,Beijing 100048,China)

机构地区:[1]北京工商大学理学院,北京100048

出  处:《数学的实践与认识》

基  金:国家自然科学基金(11101012)

年  份:2019

卷  号:49

期  号:7

起止页码:308-315

语  种:中文

收录情况:BDHX、BDHX2017、MR、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:将LSTM用于沪深300指数的股价预测中,并在通用变量开盘价、收盘价、最高价、最低价的基础上新加入了日成交量与日成交额,以此来预测第二日的最高价,获得了比较好的预测效果,并与SVR模型和Adaboost模型预测作对比,LSTM获得的测试集RMSE要更低.接着,用SVR、Adaboost和LSTM进行岭回归集成,即,先用训练集对这三种模型进行训练,然后用训练数据进行测试,将它们的测试结果作为自变量,以相应的真实第二日最高价作因变量,进行岭回归,再对测试集数据做出预测,得到测试集的RMSE进一步降低;再者,查看回归方程发现SVR系数为负,与因变量呈负相关关系,进一步选取Adaboost和LSTM两种模型在训练集上的预测结果做自变量,相应的真实第二日最高价作因变量,再次进行岭回归,得到测试集的RMSE再次降低,进一步验证了回归集成算法的有效性,可以为广大投资者做买卖决策时提供重要的参考价值.

关 键 词:股价预测 LSTM  沪深300指数 SVR ADABOOST 岭回归集成  RMSE

分 类 号:F832.51[金融学类] TP183]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心